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Note 

Conservation and Breaking of Mirror Symmetry 
in a Numerical Simulation of Vortex Flow 

Growth and bifurcation of a symmetry broken state out of a symmetric one as 
an external control parameter is varied across a threshold value occurs in many 
physical systems. Consider a forward bifurcation where the symmetry broken state 
is stable beyond the threshold and the symmetric one is unstable. Then the former 
will grow and the latter will decay only if there are perturbations that break the 
considered symmetry. In this note we investigate the conditions under which 
numerical rounding errors of a finite difference MAC [l] simulation provide 
perturbations that break a mirror symmetry. 

As an example we consider the experimentally, analytically, and numerically 
well-investigated axisymmetric vortex flow in the rotating Couette system [3-71 
between two concentric cylinders of inner radius rl and outer radius rZ with height 
H being similar to the gapwidth d= r2 - rI . The inner one rotates with constant 
angular velocity 0, the outer one is at rest, and a stationary collar closes the gap 
at the cylinder ends, z = &H/2. Below a threshold angular velocity Q,, defining a 
threshold Reynolds number R, = QCrl d/v ( N 128 for H = 1.05 d and q = rl /r2 
N OS), where v is the kinematic viscosity of the fluid, there are two compressed 
vortices that are mirror images of each other. The mirror plane is the plane z = 0. 
This flow state as shown in Fig. la is unique in the sense that it always develops 
under quasistatic increase of the control parameter R from zero. Above R, the 
mirror symmetric flow while remaining a solution of the Navier-Stokes equations 
(NSE) is unstable and a vortex flow is stable that breaks the mirror symmetry 
of the system. It consists of two vortices (that are still axisymmetric) of different 
size-cf. Fig. lb. With increasing R one of them grows in size on cost of the other. 
Which of the two grows is determined by symmetry breaking perturbations or 
initial values. Note that the results of numerical simulations and experiments on all 
these symmetry, stability, and bifurcation properties agree with each other. 

Following SOLA [2] we have integrated the axisymmetric Navier-Stokes equa- 
tions for the velocity u = ue, + oe, + we, and the pressure p on the twodimensional 
r-z cross section between the cylinders. Here e are radial, azimuthal, and axial 
unit vectors. The discretized MAC version of the NSE is as its continuous counter- 
part mirror symmetric. Thus starting from symmetric initial conditions, there are 
only the rounding errors that can possibly introduce mirror symmetry breaking. We 
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shall demonstrate this as a representative example at the dissipative term D = 8:~ 
entering the MAC equations for the radial velocity u in the form 

WY 2) = (Az)2 1[&2B+C]. (1) 

Here 

A = u(r, z + AZ); B = u(r, z); C=u(r, Z-AZ) (2) 

denote values of u on axially neighboring grid points at some time t. At the mirror 
image of the position r, z the dissipation term reads 

D(r, -z) = (4z)z --!- [C-2lr+A’], 

where the primed quantities denote the values of ZJ at respective mirror positions 
(cf. Fig. 2). 

Without rounding errors one obtains D(r, z) = D(r, -z) if u = u’, i.e., if A = A’, 
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FIG. 1. Vortex flow field in the r-z cross section of the gap between concentric cylinders of the 
rotating Couette system: (a) Unstable mirror symmetric vortices above threshold (R, 2 128 for 
H = 1.05 d, q = 0.507). Below threshold this state is stable. (b) Stable symmetry broken flow above 
threshold R, 
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B= B', C = C’. Thus an initially symmetric field would indeed remain symmetric. 
Rounding errors, however, cause (computer addition is not associative) 

(A-2B)+C#(C-2B)+A, (4) 

leading to D(r, z) # D(r, -z) and thus to mirror symmetry breaking. 
Now consider as an alternative the mirror preserving computer instruction 

m-2 z) = (Az)* &(A-B)-(B-C)], 

where 8:~ is evaluated consecutively out of the first derivatives, 8:~ = a,(a,u). Its 
roundoff errors are mirror symmetric since 

WY -z) = (Az)* L[(C'-B')-(B'--A')] 

is equal to D(r, z) (computer addition is commutative) if A = A’, B = B', C = C'. 
Formulating in a similar manner all finite difference expressions of the MAC algo- 
rithm in this mirror symmetry preserving way (5) we in fact could not generate the 
symmetry broken flow state of Fig. lb when we started from symmetric initial 
conditions. (Starting from asymmetric initial conditions, however, we naturally got 
a stationary asymmetric state for R > R,.) With finite difference instructions of type 
(1) that did not suppress the appearence of mirror symmetry breaking roundoff 
errors, on the other hand, the code ran for R > R, into the symmetry broken stable 
solution and for R < R, into the symmetric state. Our considerations apply in a 
similar way also to other flow problems. An example is the unstable stationary 
mirror symmetric flow of convective rolls in the Rayleigh-BCnard system with a 
binary fluid mixture. There, for some parameter values, left or right travelling waves 
that break mirror symmetry are the stable solutions [8]. 

As a conclusion we remark that in order to obtain stable symmetry broken solu- 
tions in MAC simulations of symmetric equations with symmetric boundaries one 
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FIG. 2. Grid points of the MAC code for evaluating aju 
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either has to start from asymmetric initial conditions or provide symmetry breaking 
perturbations. The latter can arise from rounding errors when the finite difference 
expressions are formulated in a particular way. Eliminating these two symmetry 
breaking mechanisms altogether, the MAC code generates symmetric solutions 
irrespective of whether they are stable or unstable. 
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